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Abstract. We show that the shell model, currently used in the lattice dynamics study of 
ionic crystals, is a singular system. The model is treated as a constrained Hamiltonian 
system. The use of the Dirac generalised Hamiltonian formalism for constrained systems 
permits us to solve the difficulties which appear in quantum mechanics and statistical 
mechanics formulations. 

The constraints, first-class Hamiltonian and Dirac bracket are obtained. The general 
expression for the partition function of the quantum statistical mechanics is defined. 

Finally some considerations about the perturbative and non-perturbative methods are 
performed. 

1. Introduction 

For the lattice dynamics study of ionic crystals the so-called shell model was used 
with considerable success [l]. The outer electrons of the ions are represented in this 
model by a spherically symmetric massless charge shell. In this way polarisable effects 
are incorporated, and much better agreement than that predicted for the rigid ion 
model can be obtained for the dispersion curves of phonons as well as other properties 
measured for several materials [2]. 

In a harmonic approximation the usual treatment is to find the shell coordinate 
from their equations of motion (adiabatic condition), and then substitute in order to 
give an effective potential for the motion of the cores (nuclei) [ 13. However there exist 
various cases in which the harmonic approximation can become inadequate, for 
example at high temperatures when the atomic displacements are large, or when we 
are near a structural phase transition. Therefore an anharmonic part in the potential 
must be incorporated [3]. 

Now, in an anharmonic situation the shell coordinate cannot be obtained exactly 
from the adiabatic condition. Thus the formulation of the dynamics and statistical 
mechanics of the shell model with a general potential of interaction is a question that 
cannot be solved immediately. This difficulty should be overcome by assigning a finite 
mass to the shell but this fact leads to the introduction of undesirable degrees of 
freedom which cannot be eliminated later (i.e. in the thermodynamic properties) [4]. 

A more recent result in the treatment of an anharmonic model is a perturbative 
method using a self-consistent phonon approximation as a generalisation of the 
harmonic model [ 5 ] .  On the other hand, a formal expression for the partition function 
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of classical statistical mechanics was obtained [ 6 ] .  However it can be useful to give 
a general expression for the partition function in which the perturbative and non- 
perturbative effects can be incorporated. As is well known, to take into account the 
non-perturbative effects is essential near a structural phase transition [ 71. 

The purpose of the present paper is to consider the shell model and show that it 
can be treated as a constrained Hamiltonian system [ 8 ] ,  where all the constraints are 
of second class. 

Since the pioneering work of Dirac, the theory of singular systems (constrained 
Hamiltonian systems) has been the subject of considerable interest. This formalism 
is the one currently used in field theories and the connection between constraint and 
invariance properties (i.e. gauge symmetry) of theory is well established. The incorpor- 
ation of the constraints in the notion of a Feynman path integral was formulated by 
Fadeev [9]. His work treated only systems with first class constraints. Senjanovic 
generalised it to systems with second class constraints [lo]. 

The present paper is organised as follows. In section 2 the model is presented and 
their difficulties are discussed. We show that the model corresponds to a singular 
Lagrangian system. In section 3 by using the theory of constrained Hamiltonian systems 
the model is studied. In section 4 the quantification problem and the statistical 
mechanics of the model are treated. An expression for quantum partition function is 
found. Finally in section 5 conclusions are given. 

2. Preliminaries of the model 

In the usual lattice dynamics the interaction between the nuclei, including the effects 
of the electron clouds, can be taken into account in a potential @ ( U )  (where U is the 
displacement of the cores). The normal approach is to treat the electrons adiabatically 
[ l l ]  by first solving an equation for the electron motion, assuming that the nuclei are 
fixed, and then using these solutions to supply the potential @ ( U )  for the motion of 
the cores. This approximation is a good one as the electron mass is small. 

Instead of solving the electron motion explicitly, it has been found that a good 
form in which to treat the electrons is as massless shells, with an empirical potential 
between the shells themselves, and between cores and shells. 

Having this in mind, the equations of motion of the lattice dynamics of systems 
which are described through a shell model can be obtained from the Lagrangian: 

L( U, U, U )  = fri+MU - @( U, U )  ( 2 . 1 )  
where the vectors U and U describe the core and shell displacements, respectively. 
These vectors have elements corresponding to the Cartesian component of the ion in 
their respective unit cell. M is the mass matrix, @(U, U) is a general potential. 

The Euler-Lagrange equations are 

a@ 
a u  

MU+-=O 

- 0. 
a@ 
av 
-- 

( 2 . 2 ~ )  

( 2 . 2 6 )  

Equation ( 2 . 2 6 )  is the so-called adiabatic condition. Because ( 2 . 2 b )  is in general 
nonlinear in U, we do not know the functional relation u(u) .  
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As is well known the Hamiltonian is essential for the statistical and quantum 
formulations. Now the Legendre transformation involved in passing from the 
Lagrangian (2.1) to the corresponding Hamiltonian is singular. This is because 

The previous considerations show us that we are in the presence of a constrained 
Hamiltonian system [8]. 

3. Constraints and first-class Hamiltonian 

Then the Hamiltonian formulation of the shell model requires the introduction of the 
following primary constraints: 

Po = 0. (3.1) 

Equation (3.1) is a weak one. (For the meaning of the symbol = see [8].) As the 
Hamiltonian is not univocally determined, we can define a total Hamiltonian as follows: 

HT= H + F + ~ ,  (3.2) 

H = +pp:M-'p. + @ ( U ,  U). (3.3) 

where H is the naive Hamiltonian: 

In (3.2), the components of the vector F are general functions of the coordinates and 
momenta. These functions can be interpreted as the shell velocities, because 

U 1 {U, HT}pB = F (3.4) 

where we have used (3.1)-(3.3) and the fundamental Poisson brackets ( P B ) .  

constraints (3.1). This leads us to the equation 
The consistency conditions of the theory requires the preservation in time of the 

This introduces a new set of constraints: 

(3.6) 

Then the adiabatic condition appears in the theory as a secondary constraint. If 

(3.7) 

we further proceed to examine the consistency relations, we find 

{x( U, U), HT} - T+(  U, u)M-'pU - S(  U, u ) F  = 0 

where we have introduced the following matrix notation: 

a2@ 
T(u, U )  =- 

auau  

a2@ 
S ( u ,  U)=--. a m  

( 3 . 8 ~ )  

(3.8b) 
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In the harmonic case, these are force constant matrices of the model. For a general 
potential of interaction 0 these matrices are functions of U and U. It will be shown 
that S(u, U) must be a non-singular matrix (this is well known in lattice dynamics 
theory in the harmonic approximation) and therefore all the F components are 
determined and these can be formally expressed as 

P.. (3.9) F = - S - ' T + M - ~  

Therefore the first-class Hamiltonian (3.2) becomes 

H T -  -1 2 p . M - ' p U + 0 ( ~ ,  + U) -p:M-'TS-'pL. .  (3.10) 

In summary, we have a theory which is defined by the first-class Hamiltonian (3.10) 
without arbitrary coefficients, unlike gauge theory [12]. This is because all the con- 
straints (3.1) and (3.6) are of second class. The existence of these second-class 
constraints reveals the existence of degrees of freedom which are not physically relevant. 
In the harmonic case these degrees of freedom can be discarded as we have mentioned, 
and this constitutes the usual approach. 

In the present case we have a general interaction potential. Then the nonlinearity 
of the adiabatic condition makes impossible the elimination of these degrees of freedom. 
However, the identification of our system as a constraint system allows us to continue 
with the treatment of the dynamics of the model. 

4. Quantisation and statistical mechanics 

The second-class constraints may be eliminated by means of a Dirac bracket ( D B ) .  

Any two quantities A and B have a Dirac bracket defined by 

{ A ,  B)DB'{A, B } P B - { A ,  d")A"b{d)b,  B )  (4.1) 

where 4a  are the components of the constraint vector: 

and Aab{c$b, d)c}pB= 8"'. The explicit form of the A is 

From the Dirac theory we can see that det A-'  is different from zero and this implies 
that S is an invertible matrix, as we have mentioned in section 3. 

The equations of motion are valid for both Dirac brackets or Poisson brackets, 
because HT is first class. This equations are equivalent to the Euler-Lagrange equations 
(2.2) together with the equations for the shell velocities. 

Now, as is usual in this treatment, we have a quantisation method for our formalism. 
For this purpose we must take the conmutation relation corresponding to the Dirac 
bracket (4.1) and consider the constraints as strong equations between operators. This 
canonical procedure for quantisation of the shell model might be hard to use in a 
particular model. 

The quantisation in terms of path integrals becomes a more powerful method and 
allows us to extend the results to quantum statistical mechanics. The probability 
amplitude of the system which was at uo - uo will be at u1 * u1 at time T can be written 
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Our system has only second-class constraints and the incorporation of them in a 
path integral must be done by using the Senjanovick method [lo]. This is rather 
different from using the Faddeev-Popov method [ 141 as was suggested in [5], because 
this method has been used for Yang-Mills theories which are systems where all the 
constraints are first class. 

Finally, in a recent work [6] we show that it is possible to incorporate the nonlinear 
effects in the classical partition function of a particular shell model. By similar 
arguments we think that the nonlinear effects in quantum statistical mechanics, in a 
semiclassical approximation [ 151, can be incorporated. These arguments are under 
consideration. 

Appendix 

In an equivalent way to [6] for the classical statistical case, the formal expression for 
the quantum partition function is given by 

9 u  exp( -; SE(% 

with 

where U( U )  must be considered as implicit functions of U through the adiabatic condition 

a@ 
au x[u,u]=--(u,u). 

We rewrite the measure of the integral (Al) as follows: 

9 u  = 9 u 9 u S (  U - U( U ) )  ('44) 
where S is the functional Dirac delta [16]. 

Then the expression ( A l )  takes the form: 

where we have written 

S ( u -  u ( u ) )  = S(x(u, U)) det - 

Equation (A5) is the same as (4.6). Although this form is more straightforward 
than the one obtained in this paper, it does not show us the constrained nature of the 
shell model which is non-trivial. 
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